
OXPath
(Oxford XPath)

Andrew Sellers

Georg Gottlob

Giovanni Grasso

Tim Furche

Christian Schallhart

Outline

– Introduction

– Actions

– Additional Axes

– Web Form Field Association

– Result Extraction

– Architecture

Goals and Motivations

• Provide a declarative formalism that extends
XPath
– Simulate user actions in order to query and

manipulate a Dynamic DOM

– Provide a means for automated systems to specify and
maintain Deep Web queries

• Develop a lightweight, scalable tool for building
domain-specific knowledge bases from existing,
disparate web data

Goals and Motivations

• DIADEM

– will generate (by learning) suitable “access paths”
for retrieving and aggregating data from websites

– On the fly evaluation on thousand of websites and
interlinked pages containing forms and menus

• Main issues

– Web forms population

– Result pages navigation and data extraction

– Scalability

OXPath

• Extension of XPath

• Facilitates querying web form and retrieving
returned data

• Simulates user actions (mouse events/keyboard
strokes) for filling out web forms and collecting
data from multiple pages

• Highly parallelizable

• Navigation across multiple pages

Actions

• Standard XPath expressions are used for node
identification and navigation

• Actions to be taken on the context node are
expressed by {..} brackets

• Three type of “actions”
– Explicit input reference

• e.g., entering “London” in a text field
• entering values read from external sources (DB, XML,

separate OXPath expression, file)

– Events
• submit, click, unclick, mouse events

– Options selection by index
• e.g., suggested options in a drop-down list, multiselection

User actions simulation

www.google.com// input[@name='q']/{“Oxford”}/

following::input[@name='btnG']/{click}

A single OXPath expression can also represent several queries
(non-ground expression)

www.google.com//input[@name='q']/{“Oxford”, “Cambridge”,
“London”}/ following::input[@name='btnG']/{click}

Its instantiation produces three different ground expressions,
asking “Oxford”, “Cambridge”, and “London”, respectively.

In case of multiple selection allowed, it is possible to
specify values using inner { } brackets

Input can be also provided
from external sources by special predicates such as
{ fromDB(db url, sql query) }
{ fromFile(url) } { fromRDF(url, sparql query) }
{ fromXML(document url, XPath query) }

By values { {“val1”,…, ”valn”} }

By index { {1,4,6,7} }

All values { {*} } and {{regex}}

Additional Axes for OXPath
Facilitate the navigation between form fields

– Next-Field
• selects the next field, in document order

– Previous-Field (as inverse of Next-Field)
• selects the previous field, in document order

– Following-Field
• returns all the following fields, in document order.

– Preceding-Field (as inverse of Following-Field)
• returns all the preceding fields, in document order

Additional Axes

• Support conditional predicates and node tests
– /next-field::input[@type=radio]

• finds the first radio button in document order

• Expressions become far shorter and more
intuitively

www.google.com//input[@name='q']/{“Oxford”}/
following::input[@name='btnG']/{click}

www.google.com//next-field::*/{“Oxford”}/next-field::*/{click}

Form Field Associations

…//next-field::*/{ fromFile(myFile)}/

next-field::*/ { fromFile(myFile)}/

Allows for much more efficient evaluation than Cartesian
products of field values

…//next-field::*/{ X = fromFile(myFile)}/

next-field::*/ { fromFile(myFile) > X }/

Result Extraction

..../next-field::*/{“Renting”}/.../{...}/.../{“Submit”}

Atomic results
regardless of
presentation (list, table,
etc.)

/foreach(...)/...
/{scrape(loc)}/...

Thank you

