
    

 EXPath 
 A practical introduction 

XQuery Meetup, December 3d, 2009 
Paris

Florent Georges 
fgeorges.org 



    

EXPath
A practical introduction

● Introduction    ←
● The project
● HTTP Client
● ZIP facility
● Packaging
● Putting it all together
● Sibling projects



    

Introduction

● XPath is a textual language to navigate XDM 
trees

● It is used standalone or embedded in XSLT, 
XQuery, XProc, XForms, and other languages

● A recommendation defines a standard library 
of functions

● An implementation or host language can 
provide additional functions: the extension 
functions



    

Introduction

● More and more demand for extensions for 
XSLT 2.0 and XQuery for one year

● Extension functions are the easiest way
● They are at the XPath level
● Acting at the XPath level allows them to be 

used in another languages
● XProc is a good example of such another 

language (EXProc defines also extensions for 
a few months)
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The project

● Collaborative
● The base delivery unit is the module
● The main deliverable is the specification
● Each module has its own maintainer
● Implementations as external extensions are 

encouraged during specification
● Independent on any particular vendor
● ...though they are welcome, of course ;-)



    

The project

● Extension functions libraries
● But also:

– Testing framework (based on Jeni's XSpec?)

– Documentation system (based on Ken's 
XSLStyle?)

– General-purpose packaging system

– Help identifying best practices

– Servlet-like container

– ...
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HTTP Client

● Send HTTP requests and handle responses
● Based on the XProc step p:http-request
● Enable one to:

– Retrieve plain resources on the web

– Query REST-based Web sevices

– Query SOAP-based Web services

– Query Google services



    

HTTP Client

http:send-request($request as element(http:request)) as item()+



    

HTTP Client

http:send-request($request as element(http:request)) as item()+

<http:request href="http://www.example.com/..." method="post">
   <http:header name="X-Header" value="some value"/>
   <http:body content-type="application/xml">
      <hello>World!</hello>
   </http:body>
</http:request>



    

HTTP Client

http:send-request($request as element(http:request)) as item()+

<http:request href="http://www.example.com/..." method="post">
   <http:header name="X-Header" value="some value"/>
   <http:body content-type="application/xml">
      <hello>World!</hello>
   </http:body>
</http:request>

<http:response status="200" message="Ok">
   <http:header name="..." value="..."/>
   ...
   <http:body content-type="application/xml"/>
</http:response>



    

HTTP Client
http:send-request(
   <http:request href="http://www.balisage.net/" method="get"/>)

↘

( 

   ?
)



    

HTTP Client
http:send-request(
   <http:request href="http://www.balisage.net/" method="get"/>)

↘

( 
 <http:response status="200" message="OK"> 
    <http:header name="Server" value="Apache/1.3.41 (Unix) ..."/> 
    ... 
    <http:body content-type="text/html"/> 
 </http:response> 
, 
   ?

)



    

HTTP Client
http:send-request(
   <http:request href="http://www.balisage.net/" method="get"/>)

↘

( 
 <http:response status="200" message="OK"> 
    <http:header name="Server" value="Apache/1.3.41 (Unix) ..."/> 
    ... 
    <http:body content-type="text/html"/> 
 </http:response> 
, 
 <html xmlns="http://www.w3.org/1999/xhtml"> 
    <head> 
       <title>Balisage: The Markup Conference</title> 
       ... 
)



    

HTTP Client

● Live samples:
– XQuery with Saxon, MarkLogic and eXist

– Google's GData API

– WSDL Compiler



    

EXPath
A practical introduction

● Introduction
● The project
● HTTP Client
● ZIP facility    ←
● Packaging
● Putting it all together
● Sibling projects



    

ZIP facility

● Read and write ZIP files
– List all entries

– Extract specific entries

– Update existing entries

– Create brand-new ZIP files

● Well suited for XML + ZIP documents 
(OpenDocument, Open XML, EPUB, etc.)



    

ZIP facility

● List entries:

– zip:entries($href) as element(zip:file)

● Extract entries:

– zip:xml-entry($href, $path) as document-node()

– zip:html-entry($href, $path) as document-node()

– zip:text-entry($href, $path) as xs:string

– zip:binary-entry($href, $path) as xs:base64Binary

● Create new ZIP files:

– zip:zip-file($zip) as empty()

– zip:update-entries($zip, $output) as empty()



    

ZIP facility

<zip:file href="some.zip" xmlns:zip="http://www.expath.org/mod/zip"> 
   <zip:entry name="file.xml" output="xml"> 
      <hello>World!</hello> 
   </zip:entry> 
   <zip:entry name="index.html" output="html" href="/some/file.html"/> 
   <zip:dir name="dir"> 
      <zip:entry name="file.txt" output="text"> 
         Hello, world! 
      </zip:entry> 
   </zip:dir> 
</zip:file>



    

ZIP facility

● Live samples:
– List entries in a ZIP file

– Extract an XML entry

– Create a new file



    

ZIP facility

● “Compound Document Template” pattern
● Create a new ZIP file by copying an existing 

one, updating and adding some entries
● For instance, you can edit a text document 

directly within OpenOffice, and use it as a 
template to format an input data document



    

ZIP facility
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Packaging

● Support XSLT, XQuery and XProc
● Can be extended for other X* technologies
● Independent on the processor for std X* files
● Allow processor-dependent features           

(i.e. for Java extension functions)
● Support only deploying libraries
● Can be used as a building block for more 

complex frameworks, like XRX



    

Packaging

● Deployment descriptor:
<package xmlns="http://expath.org/mod/expath-pkg">
   <module version="0.1" name="google-xslt">
      <title>Simple XQuery package for tests</title>
      <xsl>
         <import-uri>http://www.fgeorges.org/google/gdata.xsl</import-uri>
         <file>xsl/gdata.xsl</file>
      </xsl>
      ...
   </module>
</package>



    

Packaging

● Example of use:
<xsl:stylesheet xmlns:f="http://fxsl.sf.net/" version="2.0">

   <xsl:import href="http://fxsl.sf.net/f/func-Fibonacci.xsl"/>

   <xsl:template match="/" name="main">
      <fibo>
         <xsl:value-of select="f:fibo(10)"/>
      </fibo>
   </xsl:template>

</xsl:stylesheet>

http://fxsl.sf.net/


    

Packaging



    

Packaging

● Examples:
– Deploy XSLT and XQuery for Saxon

– Deploy Java extensions for Saxon

– Deploy XQuery for eXist

– Deploy Java extensions for eXist



    

Packaging

● For now, use an external application to deploy
● Limited to the processor's mechanism to 

resolve URIs
● For some processors, not possible to deploy 

without changing importing stylesheets/queries
● Ideal situation: supported natively by a broad 

number of processors
● Is a support for other frameworks, and CXAN



    

Packaging

● In XSLT
   <!-- the public and absolute import URI -->
   <xsl:import href="http://www.expath.org/mod/http-client.xsl"/>

● In XQuery?  There is no convention.
   import module namespace
      http = "http://www.expath.org/mod/http-client"
      at "http://www.expath.org/mod/http-client.xq";

 - versus -

   import module namespace
      http = "http://www.expath.org/mod/http-client";
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Putting it all together

● Use the HTTP Client to access various Google 
APIs (REST Web services): contacts, maps, ...

● Use ZIP facility and the Compound Document 
Template pattern

● All those libraries are accessed through the 
Packaging System



    

Putting it all together
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Sibling projects

● EXQuery, EXSLT 2.0, and EXProc
● Where's the border?

– EXPath Packaging system

– Servlet-like container definition

– Full XRX container definition



    

That's all Folks!

● Plenty of other potential extensions
● More low-level and general-purpose: nested 

sequences and first-class function items
● Join the mailing list and browse the website:

http://www.expath.org/   
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