

 EXPath
 A practical introduction

XQuery Meetup, December 3d, 2009
Paris

Florent Georges
fgeorges.org

EXPath
A practical introduction

● Introduction ←
● The project
● HTTP Client
● ZIP facility
● Packaging
● Putting it all together
● Sibling projects

Introduction

● XPath is a textual language to navigate XDM
trees

● It is used standalone or embedded in XSLT,
XQuery, XProc, XForms, and other languages

● A recommendation defines a standard library
of functions

● An implementation or host language can
provide additional functions: the extension
functions

Introduction

● More and more demand for extensions for
XSLT 2.0 and XQuery for one year

● Extension functions are the easiest way
● They are at the XPath level
● Acting at the XPath level allows them to be

used in another languages
● XProc is a good example of such another

language (EXProc defines also extensions for
a few months)

EXPath
A practical introduction

● Introduction
● The project ←
● HTTP Client
● ZIP facility
● Packaging
● Putting it all together
● Sibling projects

The project

● Collaborative
● The base delivery unit is the module
● The main deliverable is the specification
● Each module has its own maintainer
● Implementations as external extensions are

encouraged during specification
● Independent on any particular vendor
● ...though they are welcome, of course ;-)

The project

● Extension functions libraries
● But also:

– Testing framework (based on Jeni's XSpec?)

– Documentation system (based on Ken's
XSLStyle?)

– General-purpose packaging system

– Help identifying best practices

– Servlet-like container

– ...

EXPath
A practical introduction

● Introduction
● The project
● HTTP Client ←
● ZIP facility
● Packaging
● Putting it all together
● Sibling projects

HTTP Client

● Send HTTP requests and handle responses
● Based on the XProc step p:http-request
● Enable one to:

– Retrieve plain resources on the web

– Query REST-based Web sevices

– Query SOAP-based Web services

– Query Google services

HTTP Client

http:send-request($request as element(http:request)) as item()+

HTTP Client

http:send-request($request as element(http:request)) as item()+

<http:request href="http://www.example.com/..." method="post">
 <http:header name="X-Header" value="some value"/>
 <http:body content-type="application/xml">
 <hello>World!</hello>
 </http:body>
</http:request>

HTTP Client

http:send-request($request as element(http:request)) as item()+

<http:request href="http://www.example.com/..." method="post">
 <http:header name="X-Header" value="some value"/>
 <http:body content-type="application/xml">
 <hello>World!</hello>
 </http:body>
</http:request>

<http:response status="200" message="Ok">
 <http:header name="..." value="..."/>
 ...
 <http:body content-type="application/xml"/>
</http:response>

HTTP Client
http:send-request(
 <http:request href="http://www.balisage.net/" method="get"/>)

↘

(

 ?
)

HTTP Client
http:send-request(
 <http:request href="http://www.balisage.net/" method="get"/>)

↘

(
 <http:response status="200" message="OK">
 <http:header name="Server" value="Apache/1.3.41 (Unix) ..."/>
 ...
 <http:body content-type="text/html"/>
 </http:response>
,
 ?

)

HTTP Client
http:send-request(
 <http:request href="http://www.balisage.net/" method="get"/>)

↘

(
 <http:response status="200" message="OK">
 <http:header name="Server" value="Apache/1.3.41 (Unix) ..."/>
 ...
 <http:body content-type="text/html"/>
 </http:response>
,
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Balisage: The Markup Conference</title>
 ...
)

HTTP Client

● Live samples:
– XQuery with Saxon, MarkLogic and eXist

– Google's GData API

– WSDL Compiler

EXPath
A practical introduction

● Introduction
● The project
● HTTP Client
● ZIP facility ←
● Packaging
● Putting it all together
● Sibling projects

ZIP facility

● Read and write ZIP files
– List all entries

– Extract specific entries

– Update existing entries

– Create brand-new ZIP files

● Well suited for XML + ZIP documents
(OpenDocument, Open XML, EPUB, etc.)

ZIP facility

● List entries:

– zip:entries($href) as element(zip:file)

● Extract entries:

– zip:xml-entry($href, $path) as document-node()

– zip:html-entry($href, $path) as document-node()

– zip:text-entry($href, $path) as xs:string

– zip:binary-entry($href, $path) as xs:base64Binary

● Create new ZIP files:

– zip:zip-file($zip) as empty()

– zip:update-entries($zip, $output) as empty()

ZIP facility

<zip:file href="some.zip" xmlns:zip="http://www.expath.org/mod/zip">
 <zip:entry name="file.xml" output="xml">
 <hello>World!</hello>
 </zip:entry>
 <zip:entry name="index.html" output="html" href="/some/file.html"/>
 <zip:dir name="dir">
 <zip:entry name="file.txt" output="text">
 Hello, world!
 </zip:entry>
 </zip:dir>
</zip:file>

ZIP facility

● Live samples:
– List entries in a ZIP file

– Extract an XML entry

– Create a new file

ZIP facility

● “Compound Document Template” pattern
● Create a new ZIP file by copying an existing

one, updating and adding some entries
● For instance, you can edit a text document

directly within OpenOffice, and use it as a
template to format an input data document

ZIP facility

EXPath
A practical introduction

● Introduction
● The project
● HTTP Client
● ZIP facility
● Packaging ←
● Putting it all together
● Sibling projects

Packaging

● Support XSLT, XQuery and XProc
● Can be extended for other X* technologies
● Independent on the processor for std X* files
● Allow processor-dependent features

(i.e. for Java extension functions)
● Support only deploying libraries
● Can be used as a building block for more

complex frameworks, like XRX

Packaging

● Deployment descriptor:
<package xmlns="http://expath.org/mod/expath-pkg">
 <module version="0.1" name="google-xslt">
 <title>Simple XQuery package for tests</title>
 <xsl>
 <import-uri>http://www.fgeorges.org/google/gdata.xsl</import-uri>
 <file>xsl/gdata.xsl</file>
 </xsl>
 ...
 </module>
</package>

Packaging

● Example of use:
<xsl:stylesheet xmlns:f="http://fxsl.sf.net/" version="2.0">

 <xsl:import href="http://fxsl.sf.net/f/func-Fibonacci.xsl"/>

 <xsl:template match="/" name="main">
 <fibo>
 <xsl:value-of select="f:fibo(10)"/>
 </fibo>
 </xsl:template>

</xsl:stylesheet>

http://fxsl.sf.net/

Packaging

Packaging

● Examples:
– Deploy XSLT and XQuery for Saxon

– Deploy Java extensions for Saxon

– Deploy XQuery for eXist

– Deploy Java extensions for eXist

Packaging

● For now, use an external application to deploy
● Limited to the processor's mechanism to

resolve URIs
● For some processors, not possible to deploy

without changing importing stylesheets/queries
● Ideal situation: supported natively by a broad

number of processors
● Is a support for other frameworks, and CXAN

Packaging

● In XSLT
 <!-- the public and absolute import URI -->
 <xsl:import href="http://www.expath.org/mod/http-client.xsl"/>

● In XQuery? There is no convention.
 import module namespace
 http = "http://www.expath.org/mod/http-client"
 at "http://www.expath.org/mod/http-client.xq";

 - versus -

 import module namespace
 http = "http://www.expath.org/mod/http-client";

EXPath
A practical introduction

● Introduction
● The project
● HTTP Client
● ZIP facility
● Packaging
● Putting it all together ←
● Sibling projects

Putting it all together

● Use the HTTP Client to access various Google
APIs (REST Web services): contacts, maps, ...

● Use ZIP facility and the Compound Document
Template pattern

● All those libraries are accessed through the
Packaging System

Putting it all together

EXPath
A practical introduction

● Introduction
● The project
● HTTP Client
● ZIP facility
● Packaging
● Putting it all together
● Sibling projects ←

Sibling projects

● EXQuery, EXSLT 2.0, and EXProc
● Where's the border?

– EXPath Packaging system

– Servlet-like container definition

– Full XRX container definition

That's all Folks!

● Plenty of other potential extensions
● More low-level and general-purpose: nested

sequences and first-class function items
● Join the mailing list and browse the website:

http://www.expath.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

