
REST and XQuery
Getting The Balance Right

Ron Hitchens - OverStory
@ronhitchens

1Sunday, September 18, 2011

Ron Hitchens
Now: Tech Lead RESTful web services at Wiley
Soon: Founder/Chief Architect at OverStory
Java & XQuery author, Java Champion
Five years at MarkLogic, wrote XCC

Thanks to..

Norman Walsh
Lead Engineer at MarkLogic
Wrote the MarkLogic rest: library

2

2Sunday, September 18, 2011

REST: Representational State Transfer

URI: Uniform Resource Identifier

RESTful services transfer descriptions of
things that are locatable by URIs
“Send me an HTML representation of resource X”
“Use this JSON rep. to replace your resource Y”
“Make a new resource from this XML, return URI”

REST is descriptive, not imperative

3

3Sunday, September 18, 2011

REST in a multi-tier stack

It rocks because...

It sucks because...

4

4Sunday, September 18, 2011

Processing Steps in a REST Service

Validate
Request

Parse Request
Representation

Map Request URI to
Endpoint

Process
Request

Collect Results

Create Response
Representation

Examine HTTP
Check Preconditions

Annotate HTTP
Response

5

5Sunday, September 18, 2011

REST in a Multi-Tier Stack

Java*
Service Endpoints

MarkLogic

Web Servers Web Servers Web Servers Web Servers

Other Datasources

Load Balancers Load Balancers

Java
Service Endpoints

Java
Service Endpoints

Aggregation
is simple

* Or .NET, JRuby, Scala, Clojure, etc6

6Sunday, September 18, 2011

Multi-Tier REST - Traditional Style
Java

MarkLogic
 (or your favorite XQuery Engine)

Validate
Request

Parse Request
Representation

Map Request URI to
Endpoint

Process
Request

Collect Results

Create Response
Representation

Examine HTTP
Check Preconditions

Annotate HTTP
Response

7

7Sunday, September 18, 2011

This is good because...

Pick the best language for the job

Good separation of concerns

Leverage middleware services and
libraries

Good tool support

MarkLogic is an expensive resource
Mundane “plumbing” done on commodity systems

8

8Sunday, September 18, 2011

This is bad because...

Several moving parts

XML in Java is awkward at best
Horrendously inefficient at worst

If the middleware has to parse or
modify XML, you’re losing

MarkLogic is your power tool, it should
do the XML slicing and dicing

9

9Sunday, September 18, 2011

Let’s split the difference...

Define your service in middleware
Container services, metrics, management, etc

Delegate XML processing to MarkLogic
Collect data from other datasources, if needed,
pass to XQuery as variables
MarkLogic produces final response payload
Middleware wraps it in HTTP and passes through

XQuery does the XML: you’re winning
10

10Sunday, September 18, 2011

Doing It The Hard Way, Redux...
Java

MarkLogic
(or your favorite XQuery Engine)

Validate
Request

Parse Request
Representation

Map Request URI to
Endpoint

Process
Request

Collect Results

Create Response
Representation

Examine HTTP
Check Preconditions

Annotate HTTP
Response

11

11Sunday, September 18, 2011

A Better Balance

Java

MarkLogic

Validate
Request

Parse Request
Representation

Map Request URI to
Endpoint

Process
Request

Collect Results

Create Response
Representation

Examine HTTP
Check Preconditions Annotate HTTP

Response

12

12Sunday, September 18, 2011

Aggregation - One example
Java

MarkLogic

Validate
Request

Parse Request
Representation

Map Request URI to
Endpoint

Process
Request

Collect Results

Create Response
Representation

Examine HTTP
Check Preconditions

Annotate HTTP
Response

License Server

13

Check License Pass License Token

13Sunday, September 18, 2011

REST entirely in MarkLogic (or some
other XQuery engine)

It rocks because...

It sucks because...

14

14Sunday, September 18, 2011

From This...

Java*
Service Endpoints

MarkLogic

Web Servers Web Servers Web Servers Web Servers

Other Datasources

Load Balancers Load Balancers

Java
Service Endpoints

Java
Service Endpoints

* Or .NET, JRuby, Scala, Closure, etc15

15Sunday, September 18, 2011

To This. Or Even...

MarkLogic
Service Endpoints

Web Servers Web Servers Web Servers Web Servers

Load Balancers Load Balancers

Other Datasources

16

16Sunday, September 18, 2011

All MarkLogic All The Time

MarkLogic
Service Endpoints

Other Datasources

Aggregation
is a bit trickier

17

17Sunday, September 18, 2011

All-MarkLogic REST Processing

MarkLogic

Validate
Request

Parse Request
Representation

Map Request URI to
Endpoint

Process
Request

Collect Results

Create Response
Representation

Examine HTTP
Check Preconditions

Annotate HTTP
Response

18

18Sunday, September 18, 2011

MarkLogic

Incoming HTTP Request

19

Map Request URI to
Endpoint

Examine HTTP
Check Preconditions

Annotate HTTP
ResponseURI Rewriter

Validate
Request
Process
Request

Collect ResultsParse Request
Representation
Create Response
Representation

Main 2 Main 3Main 1

19Sunday, September 18, 2011

This is good because...

It's even simpler
Fewer moving parts

No impedance mismatch as data crosses
layers of the stack

More opportunity to leverage your
MarkLogic investment

It's all XQuery
20

20Sunday, September 18, 2011

This is bad because...

The XQuery ecosystem is less
developed than the Java ecosystem
You won't get the same tooling
You may have to write more services

It's all XQuery

21

21Sunday, September 18, 2011

Simple	
 endpoint	
 defini-on	
 in	
 Java	
 using	
 Jersey	
 with	
 auto	

Response	
 boxing	
 and	
 output	
 filtering

@Path("/search")
public class SearchResource
{
! @Autowired
! private SearchProvider searchProvider; // Injected by Spring, could be test a impl

! @GET
! @Produces({TEXT_HTML})
! @ResourceFilters(value = {SearchOutputFilter.class})
! public String searchUriToHtml (@Context UriInfo uriInfo)
! {
! ! SearchRequest searchRequest = new SearchParams (uriInfo).newSearchRequest();
! ! SearchResult searchResult = searchProvider.performSearch (searchRequest);

! ! return searchResult.asString();
! }
}

22
22Sunday, September 18, 2011

Endpoints	
 for	
 GET	
 and	
 POST	
 with	
 explicit	
 Response	
 building
@Path("/search")
public class SearchResource
{
! @Autowired
! private SearchProvider searchProvider; // Injected by Spring, could be test a impl
! private static final CacheControl cachePolicy = CacheControl.valueOf ("max-age=600");

! @GET
! @Produces({APPLICATION_VND_WILEY_WS_XML, APPLICATION_ATOM_XML, APPLICATION_XML, TEXT_XML})
! public Response searchUriToXml (@Context UriInfo uriInfo)
! {
! ! SearchRequest searchRequest = new SearchParams (uriInfo).newSearchRequest();
! ! SearchResult searchResult = searchProvider.performSearch (searchRequest);

! ! return Response.ok().entity (searchResult.asString())
! ! ! .type (APPLICATION_VND_WILEY_WS_XML_TYPE)
! ! ! .cacheControl (cachePolicy).build();
! }

! @POST
! @Produces({APPLICATION_VND_WILEY_WS_XML, APPLICATION_ATOM_XML, APPLICATION_XML, TEXT_XML})
! public Response searchXmlToXml (String searchReqXml)
! {
! ! SearchRequest searchRequest = new SearchXml (searchReqXml).newSearchRequest();
! ! SearchResult searchResult = searchProvider.performSearch (searchRequest);

! ! return Response.ok().entity (searchResult.asString())
! ! ! .type (APPLICATION_VND_WILEY_WS_XML_TYPE)
! ! ! .cacheControl (cachePolicy).build();
! }

Exceptions are caught by Jersey and mapped23
23Sunday, September 18, 2011

REST natively in MarkLogic

Setting up a single-tier REST service in
MarkLogic
The rest: library

It rocks because...

It sucks because...

24

24Sunday, September 18, 2011

URI Rewriter

GET /slides/mluc11/12?theme=ml

User Agent HTTP Verb URI Accept Headers User Auth

/slides.xqy

$deck := “mluc11.xml”
$slide := 12 cast as xs:decimal
$theme := “ml”

Process
Request

/slides.xqy?deck=mluc11.xml&slide=12&theme=ml

25
https://github.com/marklogic/ml-rest-lib

25Sunday, September 18, 2011

https://github.com/marklogic/ml-rest-lib
https://github.com/marklogic/ml-rest-lib

Can’t we all just get along?

Java REST endpoints can call REST
endpoints defined in MarkLogic
Breaks dependency on Java/.NET
Makes them callable from any language
Better hides MarkLogic implementation details
Allows services to evolve behind their interfaces

It’s turtles all the way down*
Services on top of services on top of...

* http://en.wikipedia.org/wiki/Turtles_all_the_way_down26

26Sunday, September 18, 2011

http://en.wikipedia.org/wiki/Turtles_all_the_way_down
http://en.wikipedia.org/wiki/Turtles_all_the_way_down

Tiered Service Architecture

Ruby
Service Endpoints

MarkLogic
Service Endpoints

Other Datasources

COBOL
Service Endpoints

Java
Service Endpoints

Some Other Service
Service Endpoints

27

27Sunday, September 18, 2011

In Summary

REST can be implemented in many ways
Deep, heterogeneous software stack
Leaner stack with better balance of concerns
Single tier, all in MarkLogic

Pros and cons to each approach

The best choice for you depends on
your situation

28

28Sunday, September 18, 2011

REST and XQuery
Getting The Balance Right

Ron Hitchens
ron@ronsoft.com

ron@overstory.co.uk
@ronhitchens

29Sunday, September 18, 2011

